Extreme Value Theorem
If a function f(x) is continuous on a closed interval [a,b],
then f(x) has both a maximum and a minimum on interval [a,b].
If f(x) has an extremum on an open interval (a,b),
then the extremum occurs at a critical point.
This theorem is sometimes also called the Weierstrass extreme value theorem.
Proofs
The standard proof of the first proceeds by noting that f is the continuous image of a compact set on the interval [a,b],
so it must itself be compact.
Since
is compact, it follows that the image f([a,b]) must also be compact.
compact set on the interval [a,b] : finite open cover로 covering되는 set on the interval [a,b]
f는 continuous image이기 때문에 f 또한 compact 해야한다.
f 가 compact 하기 때문에, finite open cover가 존재 한다. 즉, extreme 값이 해당 domain에 대한 image set에서 존재한다.
'mathmatics' 카테고리의 다른 글
| [lin.Alg][TBF] linear algebra derivatives (0) | 2018.05.07 |
|---|---|
| [TBF][calculus] directional derivative (0) | 2018.05.02 |
| bounded set (0) | 2018.05.02 |
| compact set (0) | 2018.05.02 |


