'closed set'에 해당되는 글 1건

  1. 2018.05.02 compact set

compact set

mathmatics 2018. 5. 2. 15:18

A subset S of a topological space X is compact 

if for every open cover of S, there exists a finite subcover of S.


즉, S의 open cover들에 대해서, S의 finite subcover(element가 유한한 open cover of S의 subset)가 존재하는 경우, S가 compact하다고 한다.


cover

A family gamma of nonempty subsets of X whose union contains the given set X (and which contains no duplicated subsets) is called a cover (or covering) of X


 For example of cover

there is only a single cover of {1}

namely {{1}}

However, there are five covers of {1,2}

namely {{1},{2}}{{1,2}}{{1},{1,2}}{{2},{1,2}}, and {{1},{2},{1,2}}.



minimal cover

minimal cover is a cover for which removal of one member destroys the covering property.


Open cover

A collection of open sets of a topological space whose union contains a given subset. 

Example of open cover

- an open cover of the real line, with respect to the Euclidean topology, is the set of all open intervals (-n,n), where n in N.
- The set of all intervals (1/n,1), where n in N\{0}, is an open cover of the open interval (0,1).


'mathmatics' 카테고리의 다른 글

[lin.Alg][TBF] linear algebra derivatives  (0) 2018.05.07
[TBF][calculus] directional derivative  (0) 2018.05.02
bounded set  (0) 2018.05.02
[optimization] Extreme Value Theorem  (0) 2018.05.02
Posted by Rkql
,